Analisis kemampuan siswa dalam menyelesaikan Tes Kompetensi Representasi Gerak Lurus Beraturan (TKR-GLB)

Authors

  • Judyanto Sirait Universitas Tanjungpura

DOI:

https://doi.org/10.31571/saintek.v12i1.5675

Keywords:

kompetensi representasi, gerak lurus beraturan, tabel, grafik, formula

Abstract

Kinematika merupakan salah satu topik dalam fisika yang membahas tentang gerak sebuah benda pada lintasan lurus. Topik ini menjadi dasar untuk mempelajari topik lain seperti gerak melingkar, parabola dan rotasi. Siswa mempelajari topik ini sejak sekolah menengah hingga perguruan tinggi. Jadi tujuan penelitian ini adalah untuk menganalisis kemampuan siswa menyelesaikan tes representasi gerak lurus dengan melibatkan tiga bentuk representasi yakni tabel, grafik, dan formula. Penelitian survey dilakukan untuk mengukur kompetensi representasi siswa dengan melibatkan 8 sekolah menengah atas (SMA) di kota Pontianak. Sebanyak 672 siswa terlibat dalam penelitian ini untuk menjawab tes sebanyak 24 butir berbentuk pilihan ganda. Jawaban  siswa yang benar diberi skor 1 dan jawaban yang salah diberi skor 0 kemudian dikonversi ke skor 100. Hasil penelitian menunjukkan bahwa skor rata-rata kompetensi representasi siswa adalah 43.64 dengan kategori sedang. Persentase siswa pada kategori tinggi, sedang, dan rendah berturut-turut adalah 14.88%, 36.14%, dan 48.96%. Selanjutnya skor kompetensi representasi siswa paling tinggi yakni dari grafik ke tabel (57.07) sedangkan yang paling rendah adalah 35.65 dari formula ke grafik. Skor kompetensi representasi siswa berada di bawah 50 jika melibatkan representasi formula. Ini mengindikasikan bahwa siswa mengalami kesulitan dalam mentransformasi formula. Hasil penelitian juga menunjukkan bahwa siswa tidak mampu menentukan slope positif atau negatif dari data posisi yang diberikan. Untuk itu pendidik harus memberikan perhatian khusus ketika mengajarkan konsep gerak lurus yang melibatkan tabel, grafik dan formula serta konsep slope.

Downloads

Download data is not yet available.

Author Biography

Judyanto Sirait, Universitas Tanjungpura

Program Studi Pendidikan Fisika, Fakultas Keguruan dan Ilmu Pendidikan

References

Balta, N., Mason, A. J., & Singh, C. (2016). Surveying Turkish high school and university students’ attitudes and approaches to physics problem solving. Physical Review Physics Education Research, 12(1), 1–16.

Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62(8), 750-762.

Ceuppens, S., Deprez, J., Dehaene, W., & De Cock, M. (2018). Design and validation of a test for representational fluency of 9th grade students in physics and mathematics: The case of linear functions. Physical Review Physics Education Research, 14(2), 1-19.

Cohen, L., Manion, L., & MOrrison, K. (2018). Research Methods in Education (Eight). Routledge, Taylor & Francis Group.

Creswell, J. W., & Creswell, J. D. (2018). Research Design (Fifth). SAGE Publication .

De Cock, M. (2012). Representation use and strategy choice in physics problem solving. Physical Review Special Topics - Physics Education Research, 8(2), 1-15.

Etkina, Planinsic, & Van Heuvelen. (2019). A College Physics: Explore and Apply (2nd ed.). Pearson.

Glazer, N. (2011). Challenges with graph interpretation: A review of the literature. Studies in Science Education, 47(2), 183–210.

Henaff, R., Le Doudic, G., Pilette, B., Even, C., Fischbach, J.-M., Bouquet, F., Bobroff, J., Monteverde, M., & Marrache-Kikuchi, C. A. (2018). A study of kinetic friction: The Timoshenko oscillator. American Journal of Physics, 86(3), 174–179.

Ivanjek, L., Susac, A., Planinic, M., Andrasevic, A., & Milin-Sipus, Z. (2016). Student reasoning about graphs in different contexts. Physical Review Physics Education Research, 12(1), 1-13.

Klein, P., Müller, A., & Kuhn, J. (2017). Assessment of representational competence in kinematics. Physical Review Physics Education Research, 13(1), 1-18.

Laverty, J., & Kortemeyer, G. (2012). Function plot response: A scalable system for teaching kinematics graphs. American Journal of Physics, 80(8), 724–733.

Lichtenberger, A., Wagner, C., Hofer, S. I., Stern, E., & Vaterlaus, A. (2017). Validation and structural analysis of the kinematics concept test. Physical Review Physics Education Research, 13(1), 1-13.

Maries, A., & Singh, C. (2013). Exploring one aspect of pedagogical content knowledge of teaching assistants using the test of understanding graphs in kinematics. Physical Review Special Topics - Physics Education Research, 9(2), 1–14.

Matejak Cvenic, K., Planinic, M., Susac, A., Ivanjek, L., Jelicic, K., & Hopf, M. (2022). Development and validation of the Conceptual Survey on Wave Optics. Physical Review Physics Education Research, 18(1), 1-11.

Nixon, R. S., Godfrey, T. J., Mayhew, N. T., & Wiegert, C. C. (2016). Undergraduate student construction and interpretation of graphs in physics lab activities. Physical Review Physics Education Research, 12(1), 1–19.

Planinic, M., Ivanjek, L., Susac, A., & Milin-Sipus, Z. (2013). Comparison of university students’ understanding of graphs in different contexts. Physical Review Special Topics - Physics Education Research, 9(2), 1-9.

Rainey, K. D., Vignal, M., & Wilcox, B. R. (2022). Validation of a coupled, multiple response assessment for upper-division thermal physics. Physical Review Physics Education Research, 18(2), 1–20.

Rau, M. A. (2017). Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning. Educational Psychology Review, 29(4), 717–761.

Redish, E. F., & Kuo, E. (2015). Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology. Science and Education, 24(5–6), 561–590.

Susac, A., Bubic, A., Kazotti, E., Planinic, M., & Palmovic, M. (2018). Student understanding of graph slope and area under a graph: A comparison of physics and nonphysics students. Physical Review Physics Education Research, 14(2), 1-15.

Tippett, C. D. (2016). What recent research on diagrams suggests about learning with rather than learning from visual representations in science. International Journal of Science Education, 38(5), 725–746.

Tong, D., Liu, J., Sun, Y., Liu, Q., & Zhang, X. (2023). Assessment of student knowledge integration in learning work and mechanical energy. Physical Review Physics Education Research, 19(1), 1-13.

Van den Eynde, S., van Kampen, P., Van Dooren, W., & De Cock, M. (2019). Translating between graphs and equations: The influence of context, direction of translation, and function type. Physical Review Physics Education Research, 15(2), 1-13.

Volkwyn, T. S., Airey, J., Gregorcic, B., & Linder, C. (2020). Developing representational competence: linking real-world motion to physics concepts through graphs. Learning: Research and Practice, 6(1), 88–107.

Wemyss, T., & Van Kampen, P. (2013). Categorization of first-year university students’ interpretations of numerical linear distance-time graphs. Physical Review Special Topics - Physics Education Research, 9(1), 1–17.

Zavala, G., Tejeda, S., Barniol, P., & Beichner, R. J. (2017). Modifying the test of understanding graphs in kinematics. Physical Review Physics Education Research, 13(2), 1–16.

Downloads

Published

2023-06-03

How to Cite

Sirait, J. (2023). Analisis kemampuan siswa dalam menyelesaikan Tes Kompetensi Representasi Gerak Lurus Beraturan (TKR-GLB). Jurnal Pendidikan Informatika Dan Sains, 12(1), 12–22. https://doi.org/10.31571/saintek.v12i1.5675